Estudio gráfico de una función





Matematicas - Algebra -Aritmetica-Estadistica-Funciones-Geometria
Matematicas :Graficos y funciones

Estudio gráfico de una función


Si conocemos la expresión algebraica de una función, podemos determinar su dominio de definición y su sentido de variación. Para representarla gráficamente, construimos una tabla de valores. Recíprocamente, a partir de la representación gráfica de una función podemos deducir su dominio de definición y su tabla de variación. También podemos utilizar las representaciones gráficas de funciones para resolver ecuaciones o inecuaciones.

I. Deducir el dominio de definición de una función a partir de su representación gráfica

Para cada punto de la curva leemos sobre el eje horizontal el valor de la abscisa x

. El dominio de definición es el conjunto de estas abscisas o valores de x. Puede ser un intervalo, o la unión de dos o más intervalos.
Ejemplo: la gráfica siguiente está formada por puntos cuya abscisa x está comprendida entre -3 y 5, excluyendo al valor 1. Representa a una función definida en los intervalos: Estudio gráfico de una función.
definicion de grafica de una funcion

II. Construir la tabla de variación de una función a partir de su representación gráfica

Una función es creciente en un intervalo I, si, al recorrer su representación gráfica de izquierda a derecha, los valores de las imágenes y correspondientes a losvalores que toma x en dicho intervaloaumentan.
Una función es decreciente en un intervalo I, si, al recorrer su representación gráfica de izquierda a derecha, los valores de las imágenes y correspondientes a los valores que toma x en dicho intervalodisminuyen.
Una función es constante en un intervalo I, si su representación gráfica es un segmento horizontal.
Ejemplo:
definicion de grafica de una funcion
La gráfica anterior representa una función f que es:
—decreciente para el intervalo [-3, 2];
—constante para el intervalo [2, 3];
—creciente para el intervalo [3, 6].
La función alcanza su valor mínimo en el intervalo [2, 3].
Resumimos esta información en una tabla de variación:
definicion de grafica de una funcion

III. Deducir las soluciones de una ecuación a partir de la representación gráfica de una función

Las soluciones de la ecuación f(x) = k son las abscisas x de los puntos en los que la gráfica que representa a la función f corta a la recta horizontal de ecuación y = k.
En el caso particular de la ecuación f(x) = 0, las soluciones son las abscisas x de los puntos en los que la gráfica de la función f corta al eje horizontal o eje de abscisas.
Ejemplo:
definicion de grafica de una funcion
La curva C representa una función f.
El conjunto de soluciones de la ecuación f(x) = 4 es: S = {-2, 3}.
El conjunto de soluciones de la ecuación f(x) = 0 es: S = {-1, 2}.
Las soluciones de la ecuación f(x) = g(x) son las abscisas x de los puntos en los que la gráfica que representa a la función f corta a la gráfica que representa a g.
Ejemplo: la curva C es la representación gráfica de una función f y la recta D representa una función g. El conjunto de soluciones de la ecuación f(x) = g(x) es: S = {0, 3}.
definicion de grafica de una funcion

IV. Deducir las soluciones de una inecuación a partir de la representación gráfica de una función

Las soluciones de la inecuación f(x) < k son las abscisas x de los puntos de la gráfica de la función f situados por debajo de la recta de ecuación y = k.
En el caso particular de la ecuación f(x) < 0, las soluciones son las abscisas x de los puntos de la gráfica de f situados por debajo del eje horizontal.
Ejemplo:
definicion de grafica de una funcion
La curva C representa una función f.
El conjunto de soluciones de la inecuación f(x) > -2 es: Estudio gráfico de una función.
El conjunto de soluciones de la inecuación f(x) < 0 es: definicion de grafica de una funcion
Las soluciones de la inecuación f(x) < g(x) son las abscisas x de los puntos de la gráfica que representa a f situados por debajo de la gráfica que representa a g.
Recuerda
—Para determinar el dominio de definición de una función, se leen los valores de las abscisas x de los puntos de la representación gráfica. Dicho dominio se escribe como un intervalo o unión de intervalos.
—Para conocer el sentido de variación en un intervalo, se recorre la representación gráfica de izquierda a derecha y se observa si los valores de las ordenadas aumentan o disminuyen.
—Para hallar las soluciones de una ecuación de la forma f(x) = k, se leen las abscisas x de los puntos en los que la gráfica que representa a la función f corta a la recta horizontal de ecuación y = k. En el caso de una inecuación f(x) < k, se leen las abscisas x de los puntos situados bajo la recta de ecuación y = k.



Mas informacion en : Ecuaciones lineales y cuadraticas Estadistica y Probabilidad , introduccion, desarrollo y ejercicios Concepto de plano cartesiano Radicacion Teorema de pitagoras su demostracion y ejemplos Trigonometria basica y sus elementos