Dividir números racionales

Articulos Recientes

Dividir números racionales


En un libro de física, nos plantean calcular la resistencia total de un conjunto de resistencias en paralelo, usando la fórmula Dividir números racionales, donde R1 y R2 también son resistencias. Los datos que nos dan son R1 = 3  Dividir números racionalesR2 = 2  Dividir números racionales. 
Tenemos que realizar el siguiente cálculo: Dividir números racionales. 
Usando las teclas Dividir números racionales(o Dividir números racionales) de la calculadora, podemos comprobar que R = 1,2  Dividir números racionales(hemos introducido la siguiente secuencia de teclas: 5   Dividir números racionales  6   Dividir números racionales  Dividir números racionales ).
¿Qué es lo que hace este botón y cómo podemos hallar el resultado sin usar calculadora? 

I. El inverso de un número

1. Definición
Un número es el inverso de otro si su producto es igual a 1.
Ejemplos:
–2 y –0,5 son inversos porque -2 × (–0,5) = 1.
Dividir números racionaleses el inverso de Dividir números racionalesporque Dividir números racionales.
El inverso de 7 es Dividir números racionales. Observa: Dividir números racionales.
Por tanto:
—Todo número distinto de cero tiene un inverso.
—Si x es un número distinto de 0, podemos escribir su inverso como Dividir números racionales(se lee “uno partido de x”) o x–1 (se lee “el inverso de x” o “x elevado a la menos 1”).
—Las calculadoras suelen tener una tecla ( Dividir números racionalesDividir números racionales) que nos muestra el resultado del inverso del número que tengamos en la pantalla.

2. Propiedades

—Si a y b son dos números enteros distintos de cero, el inverso de Dividir números racionaleses Dividir números racionales, ya que Dividir números racionales.
—Un número distinto de cero y su inverso siempre tienen el mismo signo.
—El inverso del opuesto de un número es el opuesto del inverso del número. De forma más general: dado un número a, su opuesto sería –a, y el inverso de este sería Dividir números racionales, que a su vez se puede expresar como Dividir números racionales; es decir, como el opuesto del inverso.
EjemploDividir números racionales(el inverso de - 3 es el opuesto del inverso de 3).

II. Calcular la división de números positivos y negativos

1. Definición
Dados x e y como números enteros, donde y es distinto de cero, dividir x entre es lo mismo que multiplicar x por el inverso de y. Es decir:
Dividir números racionales 
2. Primeros ejemplos
Con números:
Dividir números racionales 
Dividir números racionales 
Con notación algebraica:
Si a y b son dos números, donde b Dividir números racionales0, tenemos que: 
Dividir números racionales 
Si abc y d son números, donde bc y d son distintos de cero, tenemos que:
Dividir números racionales 
Nota: es importante recordar qué puede ocurrir con el signo del resultado del cociente entre a y b.
—si a y b tienen el mismo signo, el resultado (el cociente) es positivo; 
—si a y b tienen distinto signo, entonces el cociente es negativo.
3. “Cociente de un cociente”
En los siguientes ejemplos vamos a calcular cocientes de cocientes, o dicho de otra forma, la división de una división.
Ejemplo 1
Dividir números racionales 
Dividir números racionales 
Ejemplo 2:
Dividir números racionales 
Dividir números racionales 
Ejemplo 3:
Dividir números racionales 
Dividir números racionales 
Nota: la localización del signo igual (=) determina el significado de AB y C. Es decir, la posición del signo igual nos indica cuál es la fracción principal. En los dos ejemplos de abajo presentamos la raya como dos puntos (:).
Dividir números racionales 
Generalizacióna es un número real; bc y d son números reales distintos de cero.
Tenemos las siguientes igualdades:
Dividir números racionales 
Dividir números racionales 
Dividir números racionales 

4. Otra forma de resolver el cociente de un cociente

Regla: cuando tenemos una división de fracciones expresada de la siguiente forma:
Dividir números racionales 
a y d reciben el nombre de extremosb y c reciben el nombre de medios. Pues bien, como hemos visto que dividir un número entre otro es lo mismo que multiplicarlo por el inverso del segundo, podemos expresarlo así:
Dividir números racionales 
Observa que estamos multiplicando a · d (extremos) y b · c (medios). Por lo que también podemos resolver de forma más rápida estas divisiones: multiplicando directamente los extremos (cuyo resultado sería el nuevo numerador) y los medios (el denominador). Vamos a verlo con dos ejemplos:
Ejemplo 1: calcula la siguiente división:
Dividir números racionales 
Multiplicamos directamente los extremos y los medios: 
Dividir números racionales 
Y obtenemos: Dividir números racionales.
Ejemplo 2: supongamos que uno de los números es entero. Calcula la siguiente división:
Dividir números racionales 
Si expresamos el número entero 2 como fracción: Dividir números racionales; tendremos:
Dividir números racionales 
Y resolvemos haciendo el producto de medios y extremos, obteniendo Dividir números racionales.
Ver también artículo Multiplicar números racionales.